Multiplatform analysis of the radiative effects and heating rates for an intense dust storm on 21 June 2007
نویسندگان
چکیده
[1] Dust radiative effects and atmospheric heating rates are investigated for a Saharan dust storm on 21 June 2007 using a combination of multiple satellite data sets and ground and aircraft observations as input into a delta-four stream radiative transfer model (RTM). This combines the strengths of the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations and CloudSat satellites and in situ aircraft data to characterize the vertical structure of the dust layers (5 km in height with optical depths between 1.5 and 2.0) and underlying low-level water clouds. These observations were used, along with Aerosol Robotic Network retrievals of aerosol optical properties, as input to the RTM to assess the surface, atmosphere, and top of atmosphere (TOA) shortwave aerosol radiative effects (SWAREs). Our results show that the dust TOA SWARE per unit aerosol optical depth was 56 W m 2 in cloud-free conditions over ocean and +74 W m 2 where the dust overlay low-level clouds, and show heating rates greater than 10 K/d. Additional case studies also confirm the results of the 21 June case. This study shows the importance of identifying clouds beneath dust as they can have a significant impact on the radiative effects of dust, and hence assessments of the role of dust aerosol on the energy budget and climate.
منابع مشابه
Monitoring of Dust Storm in the Midwest of Iran Case Study: Dust Storm June 16-19, 2015
This research was conducted to identify the dust storms in the Midwest of Iran from June 16 to 19, 2015. To investigate the synoptic conditions of the causes of this phenomenon, the ECMWF has an array of 0.125 degrees, including geopotential, omega, and sea level pressure, orbital and meridian components of the wind, specific humidity Soil moisture was applied to a depth of 10 cm. Similarly, fo...
متن کاملModeling of Atmospheric Regional Circulation for Event of Most Severe Spring Dust Storms on West of Iran
Dust phenomenon is a natural occurrence that occurs widespread in arid and semi-arid regions of the world, especially in the sub-equatorial latitudes. This phenomenon is among the greatest environmental problems in the world. The release of this destructive climatic phenomenon in a scattered manner in the atmosphere varies in size, time and concentration. Since this phenomenon is influenced...
متن کاملDust Storms Detection and Its Impacts on the Growth and Reproductive Traits of Grape vine (Vitis vinifera) in Malayer Plain
Introduction: Dust storm is one of the air pollutants in desert areas that have damaging effects on environmental ecosystems. This phenomenon usually happens when severe winds occur in arid areas which are accompanied by the ascent of dust particles to the upper layers of the atmosphere. HYSPLIT model can assist in detecting the path of dust entering the stations. In addition, synoptic patterns...
متن کاملEffects of Wind Erosion and Soil Salinization on Dust Storm Emission in Western Iran
Dust storms are known as hazardous problems in western part of Iran. Iraq is one of the main sources for dust storm arriving to the western part of Iran. The Radial Basis Function Network model (RBFN) has been used to assess wind erosion hazards in the source area of dust storms over several western Iranian cities. Normalized Difference Salinity Index (NDSI) was used to determine the changes in...
متن کاملDust Storm Frequency in Connection with Climatic Change in the Arid Region of Iran
Dust storms in arid and semi-arid regions have harmful impacts on the environment, the economy, and the health of local and global communities. In this study, the frequency of annual dust events in twenty-five stations and five climatic variables including rainfall, maximum annual wind speed, average annual wind speed, maximum annual temperature, and average annual temperature in arid regions o...
متن کامل